Content

- Introduction
- Handbook Structure
- Implementation process
- Example: Stage 3. Feasibility Studies
- Examples of new HS lines planning worldwide
Introduction

- **UIC High Speed Department** launched this study to provide the **guidelines** to be considered when **implementing** a High Speed Railway System-Network.

- The firms **SENER** (Spain) and **INGEROP** (France), with a **large experience in high speed railway systems** in their countries, have developed this Handbook which compiles, in a whole document, all phases that must be considered from the starting decision to the final construction and operation.

- At the end of each phase an **empowerment stage** allows to **decide** the convenience of **continuing** with next phases before incurring in additional expenses.

- All the stages can be **customized** to the requirement of each member but in any case all of them must be considered.
Handbook Structure

Emerging Phase
- **Stage 0.** Emergence
- **Stage 1.** Pre-feasibility Studies
 - 1.1. Ridership forecasting and transport services delivery
 - 1.2. Planning and Master Plan (including empowerment to continue)

Feasibility Phase
- **Stage 2.** Feasibility studies
- **Stage 3.** Environmental Assessment
- **Stage 4.** Financial & Economic Analysis
- **Stage 5.** Multicriteria Analysis
- **Stage 6.** Preliminary Design
- **Stage 7.** Empowerment

Design Phase
- **Stage 8.** Operation and Maintenance Planning
- **Stage 9.** Detailed design (including empowerment to continue)

Construction Phase
- **Stage 10.** Construction Planning
- **Stage 11.** Construction
- **Stage 12.** Testing & Commissioning (including authorization to open to revenue service)

Operation Phase
- **Stage 13.** Operation and Maintenance
- **Stage 14.** Ex-post evaluation
Handbook Structure

Structure for each Stage

- For each of the stages, the most relevant points have been identified:
 - GENERAL PURPOSE
 - Objectives of the stage: what is to be achieved in the stage
 - Key points: main aspects to be treated
 - Stage Inputs: Data, studies, regulations, etc. may be different from those coming from the previous stages
 - Stage Outputs: May be different from those needed from the former stages
 - SCHEDULING
 - Position in the general process: flow chart of the process, identifying the stage and the relations between other stages.
 - Stage Duration
 - MANAGEMENT
 - Actors involved: Stakeholders to identify positive and negative actions
 - Empowerment: How decision are taken and validated by whom
 - Risk: Main risks of the process and the mitigation measures.
Structure of the Handbook

- **EMERGING PHASE**

 - **Stage 0. Emergence:** To ensure that the project will eventually come to life.

 - **Stage 1. Pre-feasibility Studies:**

 - **1.1. Ridership forecasting and transport services delivery goals:** To estimate future ridership for each of the alternative corridors, as a result of a transport demand model that takes into account the current mobility.

 - **1.2. Planning and Master Plan:** To develop the first corridors approach for the new High Speed System and a first cost estimation.
Structure of the Handbook

FEASIBILITY PHASE (I)

- **Stage 2. Feasibility Studies:** To identify the most effective high speed rail options, with the level of investment that would be compatible with an economically, competitive and viable project with feasible technology.

- **Stage 3. Environmental assessment:** To take into account environmental issues as a key factor in project design and to prepare an environmental management plan.

- **Stage 4. Financial & economic analysis:**
 - To estimate the profitability of the project to assess the need of financial support (Financial Analysis).
 - To estimate the profitability of the project to assess social improvements due to the project (Economic Analysis).
Structure of the Handbook

- **FEASIBILITY PHASE (II)**

 - **Stage 5. Multicriteria analysis:** To contribute to the choice of a solution that balances the various requirements on the basis of shared criteria.

 - **Stage 6. Preliminary design:** To create the high-level design project.

 - **Stage 7. Empowerment:**
 - To give green light to the project.
 - To involve the various players in a decision-making process that will make possible the implementation of the project.
Structure of the Handbook

- **DESIGN PHASE**

 - **Stage 8. Operation and Maintenance planning:** To develop the Operation and Maintenance plans and estimate the operational and maintenance costs depending on the exploitation model.

 - **Stage 9. Detailed Design:**
 - To obtain an accurate definition of the project in line with the regulations and standards in force.
 - To prepare the works contracts.
Structure of the Handbook

- CONSTRUCTION PHASE

 • Stage 10. Construction Planning:
 - To ensure that all the stages in the construction process are under control and prepared for the new service.
 - To ensure compliance with the scheduled commissioning date.

 • Stage 11. Construction: To build an infrastructure and a system compliant with the safety, quality and environmental management objectives within the set deadlines.

 • Stage 12. Testing & Commissioning: To validate the system in order to obtain permission to place the new line in service.
Structure of the Handbook

- **OPERATION PHASE**
 - **Stage 13. Operation and maintenance:** To operate and maintain the High Speed system with adequate Reliability, Availability, Maintainability and Safety.
 - **Stage 14. Ex-post Evaluation:**
 - To establish whether project targets have been achieved.
 - To analyze and explain any disparities.
 - To draw conclusions for the future.
Implementation process

- **Emerging phase (1 to 5 years)**: Ridership forecasting, Transport services delivery, Main options, Sustainable strategy, Politic will & Response to a need
- **Feasibility phase (3 to 5 years)**: Financial & economic analysis, Functional solutions, Preliminary Design, Environment assessment, Acceptability
- **Design phase (2 to 3 years)**: Project Assessment, Program RAMS requirement, Detail design, Action definition, Negotiation
- **Construction phase (4 to 6 years)**: Financial commitment, Maintenance and Operating plan, Quality monitoring, Action realization, Temporary employments
- **Operation phase**: Traffic income, Operational and maintenance costs, RAMS assessment, RAMS validation, Environmental results & monitoring, Improvement of mobility

ECONOMIC ASPECTS
- Ridership forecasting
- Financial & economic analysis
- Project Assessment
- Financial commitment
- Traffic income
- Operational and maintenance costs

FUNCTIONAL ASPECTS
- Transport services delivery
- Functional solutions
- Program RAMS requirement
- Maintenance and Operating plan
- RAMS assessment

TECHNICAL ASPECTS
- Main options
- Preliminary Design
- Detail design
- Quality monitoring
- RAMS validation

ENVIRONMENTAL ASPECTS
- Sustainable strategy
- Environment assessment
- Action definition
- Action realization
- Environmental results & monitoring

SOCIAL ASPECTS
- Politic will & Response to a need
- Acceptability
- Negotiation
- Temporary employments
- Improvement of mobility

Presentation Details
- Luis, Bazán
- Railways & High Speed Lines Director, SENER, Spain
- Wednesday, July 11. Session: Project Management
Structure of the Handbook

EMERGING PHASE
- Stage 0. Emergence
- Stage 1. Pre-feasibility Studies
 - 1.1. Ridership forecasting and transport services delivery
 - 1.2. Planning and Master Plan (including empowerment to continue)

FEASIBILITY PHASE
- Stage 2. Feasibility studies
- Stage 3. Environmental Assessment
- Stage 4. Financial & Economic Analysis
- Stage 5. Multicriteria Analysis
- Stage 6. Preliminary Design
- Stage 7. Empowerment

DESIGN PHASE
- Stage 8. Operation and Maintenance Planning
- Stage 9. Detailed design (including empowerment to continue)

CONSTRUCTION PHASE
- Stage 10. Construction Planning
- Stage 11. Construction
- Stage 12. Testing & Commissioning (including authorization to open to revenue service)

OPERATION PHASE
- Stage 13. Operation and Maintenance
- Stage 14. Ex-post evaluation
Example: Stage 3. Feasibility Studies

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>KEY POINTS</th>
<th>INPUTS</th>
<th>OUTPUTS</th>
<th>ACTORS INVOLVED</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identify corridors</td>
<td>• Design Criteria</td>
<td>• Railway acceptance for Planning and Master plan</td>
<td>• Land acquisition</td>
<td>Railway Authorities</td>
<td>3-4 years</td>
</tr>
<tr>
<td>• Geotechnical investigation</td>
<td>• Right of Way</td>
<td>• Data collection</td>
<td>• Funding</td>
<td>Manufactures</td>
<td></td>
</tr>
<tr>
<td>• Cost estimation</td>
<td>• Systems</td>
<td>• Roles and responsibilities for all participants</td>
<td>• Feasibility design</td>
<td>Environmental lobbies</td>
<td></td>
</tr>
<tr>
<td>• Identity possible funds</td>
<td>• Stations & terminals</td>
<td>• Requirements and programme information and approvals schedule</td>
<td></td>
<td>Engineering companies</td>
<td></td>
</tr>
<tr>
<td>• Identify opportunities for local/regional Governments</td>
<td>• Rolling Stock</td>
<td></td>
<td></td>
<td>Governments</td>
<td></td>
</tr>
<tr>
<td>• Define potential stations</td>
<td>• Procurement Strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Identify possible interoperable systems</td>
<td>• Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Risks</td>
<td>• RAMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Stage 3. Feasibility Studies

Objectives of the stage

Overall objective of a feasibility study

The high speed rail feasibility study will:

- **Identify** possible underdeveloped train corridors and existing corridors to support a high speed railway network.
- **Establish** medium-term estimates of construction costs.
- **Undertake** geotechnical investigations in targeted areas to determine the need for tunnelling or alternative corridor alignments.
- **Identify** a list of potential projects that could be competitive with an economically competitive and viable project.
- **Survey** potential travel patterns to help define station location options and market analysis on the relative value of city centres and other city train terminals, including pedestrian services.

Stage 3: Feasibility studies

- **Task 3.1: Planning the Study**
 - **Objective:** To prepare the feasibility study methodology and plan the study.
 - **Tasks:**
 1. Define the scope of the study.
 2. Establish the methodology for the study.
 3. Plan the resources and timeline for the study.

- **Task 3.2: Feasibility Studies**
 - **Objective:** To conduct the feasibility studies for the proposed corridor.
 - **Tasks:**
 1. Collect and analyse data on the proposed corridor.
 2. Assess the technical and economic feasibility of the corridor.
 3. Identify potential environmental and regulatory issues.

Feasibility factors based on the proposed corridor

- **Key points**
 - **Key factors:**
 1. **Economic viability:** Assess the economic viability of the proposed corridor.
 2. **Technical feasibility:** Assess the technical feasibility of the proposed corridor.
 3. **Environmental impact:** Assess the environmental impact of the proposed corridor.

Additional objectives

- **Additional objectives for the feasibility study**
 - **Task 3.3: Finalizing the Study**
 - **Objective:** To finalize and present the feasibility study report.
 - **Tasks:**
 1. Review and refine the feasibility study report.
 2. Present the feasibility study report to the stakeholders.

Key points

- **Design criteria:**
 - **Rolling stock:**
 1. Technical and safety requirements.
 2. Commercial requirements.
 3. Operation and maintenance requirements.
 4. Type of service and accessibility.
 - **Railway infrastructure:**
 1. Railway network:
 - High speed and conventional railway networks.
 - High speed and intercity railway networks.
 2. Railway tracks:
 - Track geometry.
 - Track structure.
 - Track maintenance.
 - **Station and terminals:**
 1. Station layout:
 - Number of platforms.
 - Functional scheme.
 - Accessibility.
 2. Terminal layout:
 - Ticketing and security control.
 - Commercial areas.
Example: Stage 3. Feasibility Studies

Key points:

LAND ACQUISITION PROCESS

1. Identification of "key" parcels
2. Survey documents and legal description
3. Variation of land
4. Notification of land value

- Agreement
 - Payment to the State authorities
 - Object of the deed and registration
- Non-agreement
 - Identification of values according to law on an area by area basis

Stage 3: Feasibility studies

RAIS Analysis during High Speed Railway System Implementation

- Feasibility study
- Preliminary design
- Detailed design
- Procurement
- Construction
- Operation and maintenance
- Acceptance
- Test

Luis, Bazán
Railways & High Speed Lines Director, SENER, Spain
Wednesday, July 11. Session: Project Management
Example: Stage 3. Feasibility Studies

Inputs
- Railway Authority: Acceptance of Planning and tender. Pack stage and obtain a forecast of the demand.
- Data collection: Infrastructure, Geographical survey.
- Economic surveys: Investment analysis, Return on Investment.
- Legal information: Planning, Construction, Environmental.
- Operation, management, maintenance.
- Feasibility studies.

Outputs
- Main outputs of this stage are:
 - Final acquisition: based on RFIW (right of way).
 - Funding: Present the case for the implementation of the High Speed System (Construction, Operation, and Maintenance costs).
 - Feasibility Design.
Example: Stage 3. Feasibility Studies

Stage 3: Feasibility studies

Actors involved
- Environmental lobby
 - May affect the environmental constraints and could be opposed to the newly proposed high-speed system.
- Engineering companies
 - They will develop feasibility designs, showing the need for it.
- State governments
 - Political will developed financial means to promote high-speed development. Procurement strategies.
- Land acquisition procedures
 - Properties.
- Manufacturers
 - They will provide information for cutting-edge technology.
- Railway authorities
 - They will approve or reject the feasibility study.

Empowerment
- Validation by a Railway Authority before the next stage of studies may begin.

Risks and mitigation measures
- All these risk must be handed by public bodies.
- Political risk (stop and go)
- Delay due to the need for land acquisition.
- Land acquisition issues.
- Challenges to mitigate the risk:
 - Improve knowledge of the market.
 - Take pessimistic or optimistic traffic forecasts.
 - Wrong evaluation of the sensitivity to prices.

Financial aspects of the stage

Cost analysis
- OPERATIONS: Estimate value of works for infrastructure and rolling stock.
- OPEX: Operational and Autonomy cost. Depends on strategy defined.

Usual packages of construction cost
- Line construction
- Permanent way
- Earthworks
- Structures (bridges, tunnels, retaining walls, etc.)
- Laboratory and power supply
- Signaling and communications
- Stations
- Depots and sidings
- Road
- Utilities
- Other items

- Contractor administration cost
- Preliminary and General items
- Site supervision
- Testing and commissioning
- Inspection and spare parts
- Building stock investment
- Other cost
- Project management
- Design, including consultancy change (legal, advisory, etc.)
- Rail interface costs
- Topographical (ground investigation surveys)
- Statutory charges
- Programme construction risk allowance

Usual packages of Operation and Maintenance Cost
- Maintenance cost
- Infrastructure
- Civil works
- Systems
- Stations & terminals
- Rolling stock
- Maintenance machines
- Human resource
- Renewables
- Operational cost
- Personnel (On Board and Stations)
- Energy
- Training cost
- AFC systems (privacy, clearing, etc.)
- General cost
- T sanitation cost
Examples of new HS lines planning in the world

- **SPAIN:**

<table>
<thead>
<tr>
<th>Year</th>
<th>LAV Madrid-Sevilla (472 km)</th>
<th>LAV Madrid-Zaragoza-Barcelona-Frontera Francesa (804 km)</th>
<th>LAV Madrid-Valencia (391 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Phase I: Emerging phase
- Phase II: Feasibility phase
- Phase III: Design phase
- Phase IV: Construction phase
- Phase V: Testing & commissioning
- Beginning of service

Luis, Bazán
Railways & High Speed Lines Director, SENER, Spain
Wednesday, July 11. Session: Project Management
Examples of new HS lines planning in the world

- **FRANCE:**

<table>
<thead>
<tr>
<th>Year</th>
<th>LGV Nord 330 km</th>
<th>LGV Est 300 km</th>
<th>LGV Rhin-Rhône 140 km</th>
<th>LGV Bretagne 180 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **Phase I:** Emerging phase
- **Phase II:** First green light
- **Phase III:** Preliminary design
- **Phase IV:** Public enquiry
- **Phase V:** Empowerment
- **Phase VI:** Detailed design
- **Phase VII:** Civil works
- **Phase VIII:** Trackworks
- **Phase IX:** Testing & commissioning
- **Phase X:** Beginning of service
...Thank you for your kind attention

Luis Bazán
Railways & High Speed Lines Director, SENER, Spain
luis.bazan@sener.es
www.sener.es